
 1

Computer-Aided Identification of System Vulnerabilities
and Safeguards during Conceptual Design1,2

 Jane T. Malin David R. Throop Land Fleming Luis Flores
 NASA Johnson Space Center The Boeing Company Hernandez Engineering Lockheed Martin Space Operations
 2101 NASA Road 1 2100 Space Park Drive 17625 El Camino Real 2400 NASA Road 1
 Houston, TX 77058 Houston, TX 77058 Houston, TX 77058 Houston, TX 77058
 281 483-2046 281 460-8415 281 483-2055 281 333-6423
 jane.t.malin@nasa.gov david.r.throop@boeing.com land.d.fleming1@jsc.nasa.gov luis.flores@lmco.com

1 0-7803-8155-6/04/$17.00©2004 IEEE
2 IEEEAC paper #1181 Version 3.

Abstract—This paper presents an approach to helping
engineers to begin to address safety risks and to capture
information during conceptual design, for use in early
hazard analysis. Complex system accidents are hard to
understand when they happen and hard to identify before
they happen. Our goal is to aid early identification of this
type of potential accident. We describe progress in
developing a prototype Hazard Identification Tool to help
engineers capture design features of systems and
components. We describe terminology for classifying and
describing system functions, problems, vulnerabilities and
safeguards. This terminology can be applied to hardware,
software and human factors. Conceptual design information
is mapped to a library of component models, to support
generation and simulation of system accident scenarios. We
describe a strategy for identifying potential system accident
scenarios, based on an analysis of types of sequences of
events in system accidents. We describe tools for scripting
scenarios and mapping to a hybrid simulator. The generic
component library of the simulator is used to construct
component-connection models whose behavior can include
a broad variety of types of performance problems and
hazards. We illustrate the strategy with a design case with a
biological water processing system.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. HAZARD ANALYSIS USAGE CONCEPT.......2
3. FUNCTION AND PROBLEM ONTOLOGIES ..4
4. IDENTIFYING SYSTEM ACCIDENTS7
5. SIMULATING SYSTEM ACCIDENTS8
6. CONCLUSIONS..11
REFERENCES ...11

1. INTRODUCTION

In recent times, there has been increasing interest in
predicting and preventing system accidents, as startling
system accident cases have accumulated [19]. Accidents of

this type include an Osprey helicopter crash [9], Therac-25
failures [11] and the ValueJet 592 crash [10]. Complex
system accidents are hard to understand when they happen
and hard to identify before they happen.

A hardware designer is usually aware of the significant
consequences of planned operations for the anticipated
states of the system. It is more difficult to anticipate all
reasonable sequences of operations to which the system
might be subjected, or to anticipate all the off-nominal
system states in which a planned operational sequence is
inappropriate. Likewise, designers of operational procedures
or control software and human operators of the implemented
system may be far removed from the details of physical
component interactions within the system. It is difficult to
anticipate the full consequences of unplanned operations in
response to component failures or consequences of normal
operational procedures conducted in unusual circumstances.

Our goal is to aid early identification of potential accidents.
System accidents are brought about by complex unexpected
interactions between failures in systems during operations,
and by inappropriate responses to developing accidents. In
system accidents, complex system and process failures
typically interact with failures of controls, safety systems,
software and human operators. Analysis is needed of
propagation of system threats in operations, due to
interactions among subsystems and with resources (power,
thermal, data). Analysis is also needed of safeguard
subsystems for managing these threats, including controls,
safety systems, software and human operations.

We are developing an approach to help engineers identify
hazards, threats, counteractions and safeguards during
conceptual design. Our goal is to use this information for
graph analysis and simulation, for early hazard analysis that
considers operations, with some features of operating and
support hazard analysis (O&SHA) and hazard and
operability analysis (HAZOP) [4].

 2

The prototype Hazard Identification Tool (HIT) helps an
engineer to capture design information top-down from the
system level, with emphasis on system functions and
structure. HIT provides vocabularies and library-based help
for identifying and analyzing system functions, threats and
safeguards. HIT supports developing component-connection
models of systems, for model-based hazard analysis
(MBHA). HIT libraries include component models that can
be mapped to a simulation tool. By mapping selected HIT
data to models in the simulation tool, it is possible to
simulate accident event propagation during operations. The
approach uses a hybrid modeling and simulation tool, which
includes a library of generic component behavior models,
with a broad variety of types of performance problems and
hazards. HIT will also help engineers identify, develop and
script candidate accident scenarios for simulation, based on
types of sequences of events in system accidents. This paper
provides a progress report on development of these concepts
and prototypes.

2. HAZARD ANALYSIS USAGE CONCEPT
Figure 1 show as usage concept for HIT and the simulation.
Using HIT and its supporting terminology and libraries, the
engineer identifies system information that is relevant to
operations and hazards. HIT data is used for simulation, and
to generate reports for analysis by engineers specializing in
software, safety and human factors.

Figure 1 - MBHA System Usage Concept

HIT Usage Concept

HIT provides knowledge acquisition forms and supports
selection of types of components and entities, functions and
problems from libraries. Use of these libraries helps the
engineer consider potential problems and safeguards that are
associated with types of functions and entities. The
following tasks illustrate step-by-step use of HIT.

Import system data from conceptual design tool
Optionally, import some system data from a conceptual
design tool, such as DDP [2] or CUP [1]: goals/functions,

components/subsystems, and their structure of connections.
While CAD-oriented tools such as CUP focus on low-level
components and shapes, HIT, like DDP, emphasizes
system-wide functions and interfaces, from the top down.

Specify system-level information
1. List system components/parts, interfaced systems and

supporting resources (Some component-level
information could be specified during this step.)

• Import from a design tool or create instances
• Classify components/parts with component types

from library (with information used for simulation)
2. List major system operating modes, operations and

operational phases
3. Specify system goals hierarchically (Identify related

goals, super-goals, sub-goals
• Functional goals
• Counteraction goals, to manage threats to or within

system, from system, or passing through system
4. Define goals, using the Function class – both functions

and threat counteractions
• Name and classify function verb and objects, using

the function and entity type hierarchies
• For counteraction, classify as safeguard type:

Isolate/protect, monitor/indicate, control/command,
compensate/apply redundancy, or recover/maintain

• Identify agents, participants and contributors
(components/parts, materials, interfaces)

• Identify conditions for activation and performance
• Identify and evaluate function effects (importance,

effectiveness, potential problems)
o For performance, provide a model

(expressions, equations or tables)
o For problems, define using the Problem

class structure

Graphically specify system structure
Define system structure: Connect components and
interfaced systems to define relationships. (This supports
generation of an interface file that is used to translate the
connection information into a simulation model.)

Specify component level information
Component instances were identified and classified in the
system-level specification. Component classes in the library
include typical functions, potential problems and
performance models.

• Some components were identified as contributors to
specific system goals

• Some components were identified as involved in
specific system threats (hazards and vulnerabilities)

• Specify further information for each component,
same as for system (parts, operating modes,
goals/functions)

Script nominal and accident scenarios
Develop scenarios and scripts to guide simulations focused
on system accidents.

 3

• Configure elements of potential accident scripts for
operations, based on graph analysis and identified
functions, problems and safeguards. Select paths and
event sequences that include hazards and safeguards.

Biological Water Processor System Example

The HIT prototype is implemented in the open-source
Protégé knowledge acquisition tool [18]; a system that
provides intuitive information entry forms for knowledge
acquisition. We have enhanced the basic Protégé tool with
automatic data propagation and a tool for specifying
simulation scripts. Because implementation follows design,
some details of the example case have not caught up with
the design described in this paper.

Figure 2 shows use of HIT to capture system components
and structure for a biological water processor (BWP). The
BWP is a subsystem of a Water Recovery System that was
designed, built and tested at NASA Johnson Space Center
[3]. The BWP takes in raw gray water and reduces the
organic carbons and the ammonium. This water is further
processed in downstream systems that include a Reverse
Osmosis (RO) unit, a Post Processing Subsystem and an Air
Evaporation Subsystem for recycling water from RO brine.
The BWP consists of a continuous loop with two biological
processors and a Gas Liquid Separator (GLS) in a single
path. A recycle pump keeps the flow through the system at
the desired level.

Figure 2 - Biological Water Processor Components and Connections

The Packed Bed Biological Water Processor (PBB) is a tank
packed with ceramic saddles that support the growth of
anaerobic microorganisms. These microorganisms use
nitrates and nitrites provided by the nitrification process,
next in the loop, to reduce the organic carbon in the
wastewater (WW). The other biological processor, the
Nitrifier, consists of four pairs of polypropylene tubes that
contain aerobic microorganisms. These microorganisms
convert the WW ammonium to nitrates and nitrites. Both air
and water are pumped into the Nitrifier tubes. The GLS
separates the Nitrifier effluent gases and liquids, and vents
the gases. In steady state mode, WW is fed back to the PBB
while the stream is tapped at the GLS to feed the RO. About

95% of the liquid is recycled back into the PBB. The inflow
and the outflow are balanced to maintain a constant flow
through the two biological processors.

A new design can be quickly outlined with the Protégé
diagram capability. The system presents a list of
components that may be dragged from the vertical palette
into a canvas to create an instance. Dragging the mouse
pointer from one component to another in the graph
createsconnections. Figure 2 displays the BWP graph, the
palette, and part of the hierarchical component library
display in Protégé. HIT supports development of
submodels, called “inner models”. The Nitrifier is made up

 4

of four paired nitrifier tubes with common structure. Figure
3 displays a submodel of a nitrifier pair.

Figure 3 - Inner model of Nitrifier Pair

Figure 4 shows a graphical interface that is being developed
for specifying system characteristics for the BWP. Windows

open on the left illustrate forms for specifying attributes for
a function and for a vulnerability (threat), with its
safeguards. These windows contain selection boxes for
mapping system attributes into types in the appropriate class
hierarchies in the ontology.

3. FUNCTION AND PROBLEM ONTOLOGIES
We are developing ontologies for capturing system design
information. Ontologies are knowledge structures with
standard terminology. The ontologies provide hierarchies of
types/classes with default information to define the classes.
The type hierarchies and class structures provide
standardized terminology and a standard framework for
information capture in early design.

Figure 4 - Specifying Water System Attributes, with Functions and Vulnerabilities

Goals Describe Functions, Vulnerabilities and Safeguards

Specifying counteraction goals helps engineers identify
safeguards, hazards and vulnerabilities. Counteractions
(safeguards or mitigations) are designed to protect the
system against vulnerabilities, which are unacceptable
system level weaknesses or occurrences. The three types of
counteraction goals clarify the distinctions between
mishaps, hazards and threat propagation:

1. Counteract Mishap or Functional Failure: manage
threat to or within vulnerable entity

2. Counteract Hazard: manage threat from entity
3. Counteract Threat propagation: manage threat

passing through entity
Functions and safeguards, mishaps and hazards can be
classified and described by using the ontologies. The
Function class (summarized in the system-level
specification in Section 2) provides a structure for defining

 5

both functions and safeguards. The Problem class has an
attribute structure that closely resembles the function class,
defining conditions and effects for problem occurrence, and
evaluation of their prevalence and severity. Designers
consider hazards and off-nominal behaviors, and both
standard and unusual problems.

The function and entity hierarchies work together to classify
verb-object function phrases, which are used in function
analysis during system design. The current type hierarchies
for functions and entities are shown in Table 1 and Table 2.

Developing the Ontologies

The ontologies and libraries for HIT include interrelated
hierarchies of types of functions, entities, problems and
safeguards. To support use by several specialty disciplines
through the life cycle, the ontologies cover not only
equipment and materials but also control and operations by

software and humans. The terminologies are drawn from
diverse sources. The National Institute of Standards and
Technology has contributed to development of a unified
function ontology, and this ontology of functions and
“flows” has served as starting point for our work on
functions and entities [5]. We have also used concepts from
Modarres [16] and Kitamura and Mizoguchi [8] and
Norman [17]. The starting point for our problem ontology
was HAZOP terminology [4,21]. Work by Hollnagel [6]
served as a starting point for our safeguard representation.
When possible, we have converted specialty terms into
terminology that would be understandable to a design
engineer.

These ontologies have been refined and mapped to the space
domain by parsing and analyzing International Space
Station (ISS) documents. One source is the ISS Reliability
Block Diagrams (RBDs).

Table 1. Function/Capability Type Hierarchy

Level 1 Level 2 Levels 3, 4 (:) and 5 (--) Example Mappings
Process Convert transform, process, condition

 Increase or Decrease Produce/increase; Reduce/decrease; Use
generate, create; remove;
consume

 Combine or Separate Combine; Separate mix, blend; extract, divide, remove
 Damage Damage; Give way/destabilize destroy, break; collapse, yield
Place Hold Store; Carry; Support/Stabilize; Secure contain; channel; reinforce; restrain
 Shift Send: Provision, Export; Release; Free provide; disperse; spill; disengage
 Receive/import/collect; Shift in place; Transfer capture; circulate; move, transmit

 Arrange Isolate; Expose
shield, block; unlock, provide
access

 Position; Displace place, align, orient; dislocate, slip
 Assemble/order/set up; Disassemble install, configure; unpack, unstow
 Connect; Disconnect attach, fasten; demate, undock
 Cover; Uncover coat, line; strip, remove
Serve/support Provide (service) support, accommodate, supply
 (object can be function) Withhold (service) retain, hold back, withhold
 Require (service) need, require, demand
 Forego (service) waive, give up, relinquish
Energize/drive Propel/pressurize Increase force; Reduce force pressurize, pump; decompress
 (object can be function) Heat Increase heat; Reduce heat warm; cool, refrigerate
 Power Increase power; Reduce power energize, charge; discharge
 Illuminate/radiate Increase radiation; Reduce radiation light, irradiate; dim, darken
Control/manage/perform Inform/decide Communicate: Indicate -- Conceal; Interact -- Intercept show; hide; request; block

 (object can be function)
Process or Ignore: Monitor; Understand; Determine;
Ignore/mistake sense; interpret; decide; dismiss

 Control/maintain (state) Achieve; Maintain; Avoid; Recover attain; preserve; prevent; correct
 Direct (act on) Manage; Assign; Regulate/guide/modulate supervise; designate; adjust

 Command: Select; Enable—Disable; Start--Stop
switch; allow, inhibit; actuate,
cancel

 Perform/act/respond Execute; Slip/Err operate; mistake, omit
 Coordinate Correlate or Conflict: Correlate; Conflict synchronize; clash, compete
 Assist or Interfere: Assist; Interfere help; interrupt
 Reward or Punish: Reward; Punish motivate; discourage

 6

The RBDs contain a directed graph of functions and entities,
from high-level functions to individual pieces of equipment.
Each functional node has a description, which is usually an
imperative sentence – e.g. “transmit voice communication”
or “introduce O2”. Another source is the ISS Flight and
System data books [7] that contain a large set of procedures.
Many of the procedure titles are imperative sentences, e.g.
“apply electrical power to specified load” or “configure p4
power module for proximity operations”. Using an English-
language parsing program, the descriptions and titles were
broken into noun and verb phrases. We generated lists of
nouns and verbs that were not mapped to types in the
ontology. We generated charts showing the parent/child
relationships of the hierarchy, and counted the number of
times each type appeared, along with a listing of examples
and counts of the associated entities. This showed us which
portions of the hierarchies were most heavily used. This
information was used to selectively expand the word
mappings for types, and to reorganize and expand the
coverage of the type hierarchies.

Function Verb Type Hierarchy

Parts of this function verb hierarchy can be two to five
levels deep. Example words that map to the deepest levels
are shown in the right hand column.

The primary function types Process or Place entities. Three
other Level 1 types, Serve/support, Energize/drive and
Control/manage/perform, can be meta-functions, because
they can act on function entities. The type hierarchy is
designed to include both positive and negative versions of
capabilities where it is appropriate (e.g., collapse, dislocate,
hide, omit, compete). We expect these contrasts to be useful
in identifying some types of functional failures. The
Control/manage/perform ontology is designed to cover
hardware, software, human and organizational domains.

Entity Type Hierarchy

Entities can serve as objects in function phrases. Parts of
this hierarchy can be two to four levels deep. Example
words that map to the deepest levels are shown in the right
hand column. The functional type hierarchy influenced the
definition of types of equipment entities. A library of
specific instances such as materials can include hazard
attributes, such as Material Safety Data Sheet information.
We are exploring the interrelationships between the function
and entity type hierarchies.

Table 2. Entity Type Hierarchy

Level 1 Level 2 Levels 3 and 4 (:) Example word mappings
Objects Life forms microbe, person, plant
 Physical objects Systems as units hardware, payload, kit
 Parts accessory, plate, shaft
 Equipment:
 :Processors filter, reactor, extinguisher
 :Storage/carriers bottle, platform, wire
 :Tools/arrangers rope, clamp, gripper, wrench
 :Control Equipment sensor, marker, switch
 :Energy Equipment pump, radiator, battery, thruster
 Material units/flows oxygen, ammonia, moisture

 Mixtures/collections air, gray water, trash, oil
 Object structures assembly, array
Locations/places module, zone, path, worksite
Information/signals Information units/flows number, pixel, setpoint
 Information groups limits, defaults, band, sample
 Information structures vector, software, procedure
Energy/power heat, force, electricity, light
States Variables/parameters rate, pressure, level, duration
 Events/states bump, exposure, arrival
 Behaviors/performances growth, discharge
Functions Services/capabilities communication, access, handling
 Demands load, requirement, need

 7

Problem Type Hierarchy

A designer can use the problem type hierarchy to consider
and classify threats, vulnerabilities and failure modes. The
current type hierarchy for problems is shown in Table 3.
This hierarchy can be three to four levels deep. Example
words that map to the deepest levels are shown in the right
hand column.

The two main types of problems are Conditions or causes
(which can be used as model input in accident scenarios),
and Results or effects (which can be produced in accident
event sequences as model output). The Condition problem
types include both hazardous exposures and deviations from
conditions needed for performance of functions. The Result
types include both state consequences and problems with
performing functions.

Table 3. Problem Type Hierarchy

4. IDENTIFYING SYSTEM ACCIDENTS
We are developing a strategy for finding challenging system
accident sequences. It will be based on graph analysis of
effects propagation, and features that are typical of system
accidents. A typical system accident involves complex
behavior that leads to misinterpretation, which then leads to
damaging responses.

In typical system accidents, a primary failure interacts
unexpectedly with other system events, defeating a
safeguard that was not designed (or maintained in readiness)
to handle the complex version of the failure. Human
operators, software and instrumentation are frequently
implicated in the accident. Their tools and procedures of are
not prepared to help identify or block the complex problem.

Our analysis of system accidents has led to a three-phase
theory of system accidents.
1. Complexity surrounding failures

– Combinations and synergistic effects: common
causes, canceling failures, side effects, command
combinations and timing

– Interactions in dynamic complex trajectories or
histories: causes and effects that are distant in time
(e.g., interacting systems, stored potentials), or
compensating mechanisms

2. Misinformation and misinterpretation, due to complexity
– Missing information, either concealed or ignored

(possibly due to overload)
– Wrong information, due to a misleading situation or

misinterpretation of information
3. Damaging response, from complexity and misinformation

– Misapplied or not applied, due to ‘silently’ violated
assumptions (operational, coordination), failure to

Level 1 Level 2 Levels 3 and 4 (:) Example word mappings
Condition/cause Exposure/deprivation Electrical/electromagnetic stress load, shock
(can lead to bad result) (too much, too little) Thermal stress load, shock
 Radiation stress load, shock
 Acoustic stress load, shock
 Mechanical/vacuum/microgravity load, abrasion, impact
 Chemical/biological load, shock, toxic accumulation
 Signal/information overload, shock
 Deviation from required Equipment property vibrating, too small, misaligned
 (too much, too little, wrong) Materials property inadequate, excess, wrong temp.
 Energizing/driving property
 :Pressure, Thermal, Power, Radiation inadequate, excess
 Management/controls property
 :Communication missing, obscured
 :Processing inadequate, misinterpretation
 :Action/operation/response wrong, delayed
 :Coordination conflicting, unsynchronized
Result/effect Problem with State Equipment function or structure block, deform, leak, corrode
 (damage, failure, degradation) Materials noise, contamination, conductivity
 Life forms injury, infection, aging
 Environment/locations fire, explosion
 Energy/drives outage, surge
 Information erasure, corruption
 Problem performing function Error (act when inappropriate) unauthorized, improper, wrong
 Omission (when permitted/commanded) failed, missed, left out, skipped
 Insufficiency (rate, time, quantity, quality) slow, too little, degraded

 8

stop when not helping or shortsighted response to
wrong priority

– Applied but not available (deactivated or ‘silently’
unavailable due to failures of build, maintenance,
configuration)

We plan to construct accident scenarios by elaborating
safeguard scenarios that the engineer identifies. A designer
of hazard countermeasures can identify cases that test the
safeguard. We plan to begin with scenarios that test the
successful operation of a safeguard, then complicate them
with types of complexity, misinterpretation and safeguard
failures. Graph analysis will help identify combinations of
failures and failed counteractions that could potentially
result in a system accident. Selection of complicating factors
can be influenced by prevalence and importance ratings for
functions and threats, and by search backward in the model
structure from mishaps.

5. SIMULATING SYSTEM ACCIDENTS
Simulation and Models for Analyzing System Accidents

Simulations for early design should provide a quick look at
what could happen in important operations. System
accidents are characterized by propagation and combination
of threats during system operation. Sequences of system
events can be investigated in fast scenario-based simulation
of operations. Scenarios should focus on interactions
between functional behaviors of major subsystems,
components and resources. Simulations should support
investigating threat propagation that crosses system
boundaries and connections, and even changes system
connections or structure.

Experience from past simulation projects [14] has shown
that it is difficult for engineers to anticipate consequences of
operations that change the state of fluid flows in a system.
Unanticipated and counterintuitive consequences may be
spatially remote from the component directly affected by
such an operation. Potential system flows can be dependent
on the historical context of the operation, so the
consequences may be temporally as well as spatially remote.

The behavior of components should be modeled in HIT as
abstractly as possible, focusing on functions and functional
failures. Structurally, systems should be represented as
graphs. Models should be able to represent the types of
safeguards and simulate the chains of events involved in
system accidents: cascading failures, inappropriate system
reconfigurations, and undesirable global or indirect effects.

CONFIG hybrid device models

The CONFIG hybrid simulator is well suited to meet these
specialized needs. CONFIG is a modeling and simulation
tool with reconfigurable models of complex systems. It is
intended to support high-level analysis of the behavior of
complex systems during operations, and is designed for
exploration of cascading failure sequences. The simulation

and modeling approach allows for model selection in
simulation scripts, including failure insertion and selective
fidelity adjustments. The approach to simulating flow
permits qualitative capture of remote interactions between
components that otherwise could go undetected in complex
systems. It also permits analysis and simulation of
distributions of static potentials that are dependent on the
history of operations such as a sequence of valve openings
and closures.

CONFIG extends discrete event simulation with capabilities
for approximate and qualitative modeling of continuous
system behavior [12, 14]. The tool supports investigation of
the sequencing of system events in fast scenario-based
simulation of operations, and is well suited for analysis of
hazards and effects of failure modes and fault tolerance.

To evaluate operation concepts prior to implementation of
actual control software, or to evaluate manual procedures
that unfold over very long periods of time, procedures may
be modeled as components of the larger system model in
such a way that the procedure models and hardware
component models interact synchronously. CONFIG
capabilities for scripting and for modeling activities
(control, procedures, schedules) can be used for early
dynamic analysis of operational problems. In discrete event
simulation, generation of events and time-advances can be
random, supporting probabilistic analysis. CONFIG has
been used primarily for deterministic analysis of specific
state configurations and inputs, but can support probabilistic
analysis.

Discrete event simulation provides a framework for causal
modeling of states and outcomes. The continuous time base
of discrete event simulation [22] supports both event-
stepped time advances and discrete-time-step approaches to
continuous simulation. In CONFIG, a discrete-time-step
approach can be used to periodically update continuous
variables in a component [20]. Discrete event models of
systems are composed of coupled component models. In
CONFIG, components models can simulate multiple
behavior modes. Each mode has state equations that
generate behavioral effects, and conditions that govern
mode transitions. System behavior emerges from the
coupled behavior of the components. In CONFIG, the
model structure can be “recomposed” during a simulation as
the direction and activation of the couplings changes. Parts
of the model are activated or deactivated as operating modes
of components change or closed off areas of the system are
brought into the working system configuration.

Simulations of biological water processing and air
revitalization systems for spacecraft life support systems
[15] requires representations of discrete events such as the
opening of a valve and continuous changes. Continuous
changes can include pressure changes in gas storage tanks as
gas flows into or out of the tank. Gas pressures within a
fluid container may be computed using either a linear
(Eulerian) approximation or by projections of average rates

 9

of change over a time step assuming exponential decay of
the rate of pressure change. The exponential method is
necessary when running simulations at high ratios of
simulated to real time for systems in which time constants
are large. The concentrations of the constituent chemicals in
a fluid are updated by similar techniques.

During the course of a simulation, the magnitudes of
pressure sources and resistances change and the system may
be reconfigured periodically by events such as the opening
and closing of valves. In response to such events, the
simulator updates flow rates and potential drops across
affected model components using graph analysis and linear
circuit analysis of the model configuration. Prior to running
a simulation, the model is partitioned into clusters of
components so that that recomputation of flows and
potentials down to the component level are necessary only
for those clusters affected by a given simulation event.

In addition to the “dynamic” potentials associated with
flows across resistances, the analysis determines static
stresses (or static potentials) generated by flows at points
where they are in contact with blockages such as closed

valves [13]. Unlike other flow-related properties, static
potentials cannot be represented by a set of state equations.
The distribution of static potentials is dependent on the
specific history of operations performed on a system. The
distribution of static potentials in a system may be difficult
for a human operator to understand and anticipate because it
is dependent on the history of operations performed on the
system (e.g., the order in which valve and pumps are
operated). In a hydraulic system, an undesirable distribution
of static potentials could produce effects such as the
unintended opening of a relief valve, with catastrophic
consequences.

Generic Thermo-hydraulic Library

A generic component library is being developed to support
system accident simulation in thermo-hydraulic domains.
This library serves as a pathfinder for characteristics of
models that can be coordinated with HIT design
information. It is used to construct component-connection
models whose behavior can include a broad variety of types
of performance problems and hazards. Figure 5 shows the
component class hierarchy in the current library.

Figure 5 - Generic Components in CONFIG Library

Configurable Component Failures

The components in the generic library can exhibit a wide
variety of hazardous states and failures. These include
immediate or delayed discrete changes to state, behavior
mode or control regime. These changes can be triggered by
script input, failures and problems in connected
components. These factors can also trigger continuous
degradations. Nontemporal algebraic relations can define
how performance levels are affected by conditions, and
degradation and regeneration of performance rates can be
modeled. Stuck flags can control failures to operate or
change upon input. Measures or input can be randomly
varied. Resource providers have alternative methods for
reacting to excessive demands from multiple loads. Reactors
and separators models with multi-component mixtures can

handle rapid fluid composition changes for introduction of
contaminants, imbalances triggered by feed or flow reversal
problems, and partial separation with migration of products
to the wrong outflow. At the system simulation level,
buildup and release of static stresses can be simulated and
leaks can be specifiable additions to simulation scenarios.

CONFIG helps the modeler to locally and selectively
complicate a model for a specific simulation scenario. The
modeler can change component parameters rather than
revising behavior descriptions. For example, changing the
default valve resistance from “infinity” to a finite number
easily simulates leakages across closed valves.

For simulation scenarios with leakage out of a specific

 10

component, the user need only set a flag in that component.
CONFIG then regenerates the computational network for
flows with only the marginal increase in the complexity
needed to simulate the leakage of interest.

Mapping from HIT Specifications to Models

The Hazard Identification Tool is being developed to
provide users with a means of constructing system models
based on a functional view of the components. HIT,
however, is not intended for running simulations. In order to
reveal how a system performs its intended function over
time, simulations are useful. To support such simulations, a
capability is being developed to automatically translate HIT
models into models usable by CONFIG. CONFIG is
primarily oriented toward simulating the physical behavior
of components. The structure of the hierarchy of
components types in the CONFIG generic library is
influenced more by the physical structure and behavior of
the components than by their functions. Further, the names
of component types will not always be identical in CONFIG
and HIT, even when they are sufficiently similar for the

correspondence to be obvious to the user. Therefore, the
correspondence between components selected in building a
HIT model and the components available in a CONFIG
library will not always be straightforward. To automate the
translation process as much as possible, the translation
utility contains tables explicitly mapping the
correspondences between HIT and CONFIG component
representations. Figure 6 shows part of the graphical
interface for a running simulation of the biological water
processor.

Prior to running a simulation, values of device initialization
parameters may be required in addition to those the user
supplies in HIT. In order to accomplish this without
requiring the HIT user to be familiar with the details of
CONFIG device representations, each CONFIG component
has an interactive dialog interface. This interface can be
activated to elicit the necessary initialization data and guide
the user in tailoring the generic models for the specific
design.

Figure 6 - Mapped CONFIG Model of BWP

Scripts and Script Mapping

The HIT model will provide a static view of the
relationships of the functions of components in a system. A
HIT scripting capability (Figure 7) is being developed for
specifying changes over time to the functional status of
model components during simulations. The HIT user enters
information such as initial conditions and the set of events
for a simulation run. The tool queries the HIT knowledge
base for model structure and component device information.
In the HIT script, events may be specified to occur at a

given time or under a set of conditions. These conditions
may represent either nominal operations or off-nominal
induced failures. For example, a feed pump may supply
water to a reservoir that must maintain a certain amount of
water in order for the system to operate properly. To
evaluate how effectively system safeguards respond to a
pump failure, a script could specify that the pump will fail
just before the reservoir becomes empty.

 11

Figure 7 – Script Editor

A utility has been implemented for translating HIT scripts
into a CONFIG simulation script of discrete events. It is
complementary to the model translation capability. A
directive to change the functional status of a component,
such as a valve opening to permit flow, is translated into a
directive in the CONFIG script to set the value of a specific
variable that will cause the CONFIG representation of the
same valve to transition from the CLOSED mode to the
OPEN mode.

6. CONCLUSIONS
We have made substantial progress in designing and
prototyping elements of a system for aiding design
engineers in model-based hazard analysis. Our initial work
indicates that it is probably feasible to anticipate and
analyze system accidents that would otherwise elude
designers. It is also possible to develop terminology and
tools that are consistent with the concerns of the designer,
but that can also provide information to support analysis by
specialists concerned with safety and risk. We will continue
to refine, develop and integrate all these elements of a
prototype system for model-based hazard analysis.

ACKNOWLEDGMENT
This work is funded by the System Reasoning and Risk
Management thrust area in the NASA program, Engineering
for Complex Systems.

REFERENCES
[1] L. Anthony, W. C. Regli, J. E. John and S. V.
Lombeyda, “An Approach to Capturing Structure, Behavior
and Function of CAD Artifacts,” ASME J. Computer and
Information Science in Engineering. 1, 186, 200l.

[2] S. L. Cornford, M. S. Feather, and K. A. Hicks, “DDP –
A Tool for Life-cycle Risk Management,” 2001 IEEE
Aerospace Conference Proceedings, Big Sky, March 2001.

[3] Crew and Thermal Systems Division. Advanced Water
Recovery System (WRS) Integrated Test Plan. Crew and
Thermal Systems Division, Life Support and Habitability
Systems Branch, NASA Johnson Space Center, Houston
TX, February 2000.

[4] D. C. Hendershot, R. L. Post, P. F. Valerio, J. W.
Vinson, D. K. Lorenzo and D. A. Walker, "Putting the 'OP'
Back in ‘HAZOP’," MAINTECH South '98 Conference and
Exhibition, December 2-3, 1998.

[5] J. M. Hirtz, R. Stone, S. Szykman, D. A. McAdams and
Kristin L. Wood, “Evolving a Functional Basis for
Engineering Design,” Proceedings of DETC01, ASME
Design Engineering Technical Conference, September
2001.

[6] E. Hollnagel, Accident Analysis and Barrier Functions.
Halden, Norway: Institute for Energy Technology, 1999.

[7] International Space Station Program, NASA Johnson
Space Center, Assembly and Operations Support Plan
Systems Data Report, Volumes 1-16, 1997-2003. http://iss-
www.jsc.nasa.gov/ss/issapt/oddi/sys_book.html

[8] Y. Kitamura and R. Mizoguchi, “Meta-functions of
Artifacts,” Papers of the 13th International Workshop on
Qualitative Reasoning (QR-99), 136-145, 1999.
http://citeseer.nj.nec.com/387684.html

[9] P. Ladkin, “Software Direct Cause of December 2000
Osprey Crash,” The Risk Digest 21, Issue 33, April 2001.

[10] W. Langewiesche, “The Lessons of ValueJet 592,” The
Atlantic Monthly, 15: 81-98, March 1998.

[11] N. Leveson, Safeware: System Safety and Computers.
Reading, Mass.: Addison-Wesley, 1995.

[12] J. T. Malin and L. Fleming, “Enhancing Discrete Event
Simulation by Integrating Continuous Models,” Hybrid
Systems and AI. Working Notes for AAAI 1999 Spring
Symposium Series, AAAI, Menlo Park, CA., March 22-24,
1999.

[13] J. T. Malin, L. Fleming and D. R. Throop, “Predicting
System Accidents with Model Analysis during Hybrid
Simulation,” Proceedings of Business and Industry

 12

Symposium, Advanced Simulation Technologies Conference,
Simulation Councils, Inc., pp. 155-160. April 2002.

 [14] J. T. Malin, L. Fleming and D. R. Throop, “Hybrid
Modeling for Scenario-Based Evaluation of Failure Effects
in Advanced Hardware-Software Designs,” Model-Based
Validation of Intelligence, Technical Report SS-01-04,
AAAI Press, Menlo Park, CA, 2001.

[15] J. T. Malin, L. Flores, L. Fleming and D. R. Throop,
“Using CONFIG for Simulation of Operation of Water
Recovery Subsystems for Advanced Control Software
Evaluation,” Proceeding of 32nd International Conference
on Environmental Systems. SAE Paper No. 02ICES-114,
July 2002.

[16] M. Modarres, “Functional Modeling of Physical
Systems Using the Goal Tree Framework,” AAAI-98
Workshop on Functional Modeling and Teleological
Reasoning, July 1998.

[17] D. A. Norman, “Categorization of Action Slips,”
Psychological Review 88(1), 1-15, 1981.

[18] N. F. Noy, W. Grosso, and M. A. Musen, “Knowledge-
Acquisition Interfaces for Domain Experts: An Empirical
Evaluation of Protege-2000.” Twelfth International
Conference on Software Engineering and Knowledge
Engineering (SEKE2000), 2000.

[19] C. Perrow, Normal Accidents: Living with High Risk
Technologies. Princeton, NJ: Princeton Univ. Press, 1984 &
1999.

[20] D. R. Throop, J. T. Malin and L. Fleming. 2001.
“Automated Incremental Design FMEA,” 2001 IEEE
Aerospace Conference Proceedings, March 2001.

[21] V. Venkatasubramanian, Jinsong Zhao and Shankar
Viswanathan. “Intelligent Systems for HAZOP Analysis of
Complex Process Plants,” Computers and Chemical
Engineering, 24, 2291-2302, 2000.

[22] B. P. Zeigler, Theory of Modeling and Simulation. New
York: Wiley, 1976.

BIOGRAPHIES
Jane T. Malin is Technical
Assistant in the Intelligent Systems
Branch in the Automation, Robotics
and Simulation Division in the
Engineering Directorate at NASA
Johnson Space Center, where she
has led intelligent systems research
and development since 1984. She
has led development of the
CONFIG simulation tool for

evaluating intelligent software for operation of space
systems. She has led research on intelligent user interface
and intelligent agents for control of space systems, and on
teamwork tools for anomaly response teams. Her 1973
Ph.D. in Experimental Psychology is from the University of
Michigan.

David R. Throop has been an
Artificial Intelligence Specialist
with The Boeing Company since
1992. He provides engineering
software support in the Intelligent
Systems Branch in the Automation,
Robotics and Simulation Division
in the Engineering Directorate at
NASA Johnson Space Center. He
oversaw development of FMEA
modeling software and its use for
the International Space Station. His 1979 Bachelors of
Chemical Engineering is from Georgia Tech. His 1992
Ph.D. in Computer Science is from the University of Texas,
with a dissertation on Model Based Diagnosis.

Land D. Fleming is a Computer
Systems Specialist supporting the
NASA Johnson Space Center
Automation, Robotics, and
Simulation Division since 1990. He
has been involved in both the
development of computer
simulation tools and their
application to space systems. His
1987 M. S. in Computer Science is
from De Paul University.

Luis Flores is a systems software
engineer supporting the NASA
Johnson Space Center Automation,
Robotics, and Simulation Division
since 1985. He has been involved
in design and development of
software using knowledge-based,
intelligent control and computer
simulation tools for space systems
applications. His 1967 Ph.D. in
Physics is from Texas A&M
University

